218 research outputs found

    Muscling In on PGC-1α for Improved Quality of Life in ALS

    Get PDF
    Impaired activity of peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α has been implicated in the pathophysiology of several neurodegenerative disorders. In this issue, Da Cruz et al. (2012) show improved muscle function, but not survival, with increased PGC-1α activity in muscle in a mouse model of amyotrophic lateral sclerosis

    Molecular insights into Parkinson's disease

    Get PDF
    Parkinson’s disease is a neurodegenerative movement disorder characterized by loss of midbrain dopaminergic neurons leading to motor abnormalities and autonomic dysfunctions. Despite intensive research, the etiology of Parkinson’s disease remains poorly understood leaving us with no effective therapeutic options. However, the recent identification of genes linked to heritable forms of Parkinson’s disease has revolutionized research in the field and has begun to provide new clues to disease pathogenesis. Here we discuss these recent genetic advances and highlight their significance in our quest to better understand common underlying disease mechanisms that will help us identify innovative neuroprotective therapies for Parkinson’s disease

    Coenzyme Q10 effects in neurodegenerative disease

    Get PDF
    Coenzyme Q10 (CoQ10) is an essential cofactor in the mitochondrial respiratory chain, and as a dietary supplement it has recently gained attention for its potential role in the treatment of neurodegenerative disease. Evidence for mitochondrial dysfunction in neurodegenerative disorders derives from animal models, studies of mitochondria from patients, identification of genetic defects in patients with neurodegenerative disease, and measurements of markers of oxidative stress. Studies of in vitro models of neuronal toxicity and animal models of neurodegenerative disorders have demonstrated potential neuroprotective effects of CoQ10. With this data in mind, several clinical trials of CoQ10 have been performed in Parkinson’s disease and atypical Parkinson’s syndromes, Huntington’s disease, Alzheimer disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis, with equivocal findings. CoQ10 is widely available in multiple formulations and is very well tolerated with minimal adverse effects, making it an attractive potential therapy. Phase III trials of high-dose CoQ10 in large sample sizes are needed to further ascertain the effects of CoQ10 in neurodegenerative diseases

    Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's disease (PD) is the most common movement disorder. Extrapyramidal motor symptoms stem from the degeneration of the dopaminergic pathways in patient brain. Current treatments for PD are symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Although the cause of PD remains unknown, several pathogenic factors have been identified, which cause dopaminergic neuron (DN) death in the substantia nigra (SN). These include oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity. Manipulation of these factors may allow the development of disease-modifying treatment strategies to slow neuronal death. Inhibition of DJ-1A, the <it>Drosophila </it>homologue of the familial PD gene DJ-1, leads to oxidative stress, mitochondrial dysfunction, and DN loss, making fly DJ-1A model an excellent <it>in vivo </it>system to test for compounds with therapeutic potential.</p> <p>Results</p> <p>In the present study, a <it>Drosophila </it>DJ-1A model of PD was used to test potential neuroprotective drugs. The drugs applied are the Chinese herb celastrol, the antibiotic minocycline, the bioenergetic amine coenzyme Q10 (coQ10), and the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]-quinoxaline (NBQX). All of these drugs target pathogenic processes implicated in PD, thus constitute mechanism-based treatment strategies. We show that celastrol and minocycline, both having antioxidant and anti-inflammatory properties, confer potent dopaminergic neuroprotection in <it>Drosophila </it>DJ-1A model, while coQ10 shows no protective effect. NBQX exerts differential effects on cell survival and brain dopamine content: it protects against DN loss but fails to restore brain dopamine level.</p> <p>Conclusion</p> <p>The present study further validates <it>Drosophila </it>as a valuable model for preclinical testing of drugs with therapeutic potential for neurodegenerative diseases. The lower cost and amenability to high throughput testing make <it>Drosophila </it>PD models effective <it>in vivo </it>tools for screening novel therapeutic compounds. If our findings can be further validated in mammalian PD models, they would implicate drugs combining antioxidant and anti-inflammatory properties as strong therapeutic candidates for mechanism-based PD treatment.</p

    Coordinate Regulation of Mature Dopaminergic Axon Morphology by Macroautophagy and the PTEN Signaling Pathway

    Get PDF
    Macroautophagy is a conserved mechanism for the bulk degradation of proteins and organelles. Pathological studies have implicated defective macroautophagy in neurodegeneration, but physiological functions of macroautophagy in adult neurons remain unclear. Here we show that Atg7, an essential macroautophagy component, regulates dopaminergic axon terminal morphology. Mature Atg7-deficient midbrain dopamine (DA) neurons harbored selectively enlarged axonal terminals. This contrasted with the phenotype of DA neurons deficient in Pten – a key negative regulator of the mTOR kinase signaling pathway and neuron size – that displayed enlarged soma but unaltered axon terminals. Surprisingly, concomitant deficiency of both Atg7 and Pten led to a dramatic enhancement of axon terminal enlargement relative to Atg7 deletion alone. Similar genetic interactions between Atg7 and Pten were observed in the context of DA turnover and DA-dependent locomotor behaviors. These data suggest a model for morphological regulation of mature dopaminergic axon terminals whereby the impact of mTOR pathway is suppressed by macroautophagy

    Isotope-reinforced polyunsaturated fatty acids improve Parkinson’s disease-like phenotype in rats overexpressing α-synuclein

    Get PDF
    Producción CientíficaLipid peroxidation is a key to a portfolio of neurodegenerative diseases and plays a central role in α-synuclein (α-syn) toxicity, mitochondrial dysfunction and neuronal death, all key processes in the pathogenesis of Parkinson's disease (PD). Polyunsaturated fatty acids (PUFAs) are important constituents of the synaptic and mitochondrial membranes and are often the first molecular targets attacked by reactive oxygen species (ROS). The rate-limiting step of the chain reaction of ROS-initiated PUFAs autoxidation involves hydrogen abstraction at bis-allylic sites, which can be slowed down if hydrogens are replaced with deuteriums. In this study, we show that targeted overexpression of human A53T α-syn using an AAV vector unilaterally in the rat substantia nigra reproduces some of pathological features seen in PD patients. Chronic dietary supplementation with deuterated PUFAs (D-PUFAs), specifically 0.8% D-linoleic and 0.3% H-linolenic, produced significant disease-modifying beneficial effects against α-syn-induced motor deficits, synaptic pathology, oxidative damage, mitochondrial dysfunction, disrupted trafficking along axons, inflammation and DA neuronal loss. These findings support the clinical evaluation of D-PUFAs as a neuroprotective therapy for PD

    Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species

    Get PDF
    Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H 2 O 2 production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or carbonyl cyanide p -trifluoromethoxyphenylhydrazone, ďż˝ -ketoglutarate supported the highest rate of H 2 O 2 production. In the absence of ADP or in the presence of rotenone, H 2 O 2 production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of ďż˝ -ketoglutarate. Isolated mitochondrial ďż˝ -ketoglutarate dehydrogenase (KGDHC) and pyruvate dehy- drogenase (PDHC) complexes produced superoxide and H 2 O 2 . NAD ďż˝ inhibited ROS production by the isolated enzymes and by perme- abilized mitochondria. We also measured H 2 O 2 production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H 2 O 2 than mitochondria isolated from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning mitochondria

    Role of Matrix Metalloproteinase 3-mediated alpha-Synuclein Cleavage in Dopaminergic Cell Death

    Get PDF
    Evidence suggests that the C-terminal truncation of alpha-synuclein is equally important as aggregation of alpha-synuclein in Parkinson disease (PD). Our previous results showed that an endopeptidase, matrix metalloproteinase-3 (MMP3), was induced and activated in dopaminergic (DA) cells upon stress conditions. Here, we report that MMP3 cleaved alpha-synuclein in vitro and in vivo and that alpha-synuclein and MMP3 were co-localized in Lewy bodies (LB) in the postmortem brains of PD patients. Incubation of alpha-synuclein with the catalytic domain of MMP3 (cMMP3) resulted in generation of several peptides, and the peptide profiles of WT alpha-synuclein (WTsyn) and A53T mutant (A53Tsyn) were different. Combined analysis using mass spectrometry and N-terminal determination revealed that MMP3 generated C-terminally truncated peptides of amino acids 1-78, 1-91, and 1-93 and that A53Tsyn produced significantly higher quantities of these peptides. Similar sizes of peptides were detected in N27 DA cells under oxidative stress and RNA interference to knock down MMP3-attenuated peptide generation. Co-overexpression of cMMP3 with either WTsyn or A53Tsyn led to a reduction in Triton X-100-insoluble aggregates and an increase in protofibril-like small aggregates. In addition, overexpression of the 1-93-amino acid peptide in the substantia nigra led to DA neuronal loss without LB-like aggregate formation. The results strongly indicate that MMP3 digestion of alpha-synuclein in DA neurons plays a pivotal role in the progression of PD through modulation of alpha-synuclein in aggregation, LB formation, and neurotoxicity

    Metabolomic Profiling in LRRK2-Related Parkinson's Disease

    Get PDF
    Mutations in LRRK2 gene represent the most common known genetic cause of Parkinson's disease (PD).We used metabolomic profiling to identify biomarkers that are associated with idiopathic and LRRK2 PD. We compared plasma metabolomic profiles of patients with PD due to the G2019S LRRK2 mutation, to asymptomatic family members of these patients either with or without G2019S LRRK2 mutations, and to patients with idiopathic PD, as well as non-related control subjects. We found that metabolomic profiles of both idiopathic PD and LRRK2 PD subjects were clearly separated from controls. LRRK2 PD patients had metabolomic profiles distinguishable from those with idiopathic PD, and the profiles could predict whether the PD was secondary to LRRK2 mutations or idiopathic. Metabolomic profiles of LRRK2 PD patients were well separated from their family members, but there was a slight overlap between family members with and without LRRK2 mutations. Both LRRK2 and idiopathic PD patients showed significantly reduced uric acid levels. We also found a significant decrease in levels of hypoxanthine and in the ratios of major metabolites of the purine pathway in plasma of PD patients.These findings show that LRRK2 patients with the G2019S mutation have unique metabolomic profiles that distinguish them from patients with idiopathic PD. Furthermore, asymptomatic LRRK2 carriers can be separated from gene negative family members, which raises the possibility that metabolomic profiles could be useful in predicting which LRRK2 carriers will eventually develop PD. The results also suggest that there are aberrations in the purine pathway in PD which may occur upstream from uric acid

    Clinically Approved Heterocyclics Act on a Mitochondrial Target and Reduce Stroke-induced Pathology

    Get PDF
    Substantial evidence indicates that mitochondria are a major checkpoint in several pathways leading to neuronal cell death, but discerning critical propagation stages from downstream consequences has been difficult. The mitochondrial permeability transition (mPT) may be critical in stroke-related injury. To address this hypothesis, identify potential therapeutics, and screen for new uses for established drugs with known toxicity, 1,040 FDA-approved drugs and other bioactive compounds were tested as potential mPT inhibitors. We report the identification of 28 structurally related drugs, including tricyclic antidepressants and antipsychotics, capable of delaying the mPT. Clinically achievable doses of one drug in this general structural class that inhibits mPT, promethazine, were protective in both in vitro and mouse models of stroke. Specifically, promethazine protected primary neuronal cultures subjected to oxygen-glucose deprivation and reduced infarct size and neurological impairment in mice subjected to middle cerebral artery occlusion/reperfusion. These results, in conjunction with new insights provided to older studies, (a) suggest a class of safe, tolerable drugs for stroke and neurodegeneration; (b) provide new tools for understanding mitochondrial roles in neuronal cell death; (c) demonstrate the clinical/experimental value of screening collections of bioactive compounds enriched in clinically available agents; and (d) provide discovery-based evidence that mPT is an essential, causative event in stroke-related injury
    • …
    corecore